LPR Bathymetry Analyses based on 2007, 2008, 2010 & 2011 multi-beam surveys

CPG-EPA Collaboration Meeting June 12, 2012

LPR/NB Modeling Program

preliminary results - subject to review and revision

Main Findings and Observations

Pg 2

- á All bathymetry evolution is aligned with system understanding (erosion/deposition in relation to hydrograph)
- á River bed is generally stable even at very high flows
- á Localized effects (bridges, shipping etc.) sub-grid effects important, but not accounted for in model
- á Above RM 8 changes in bed forms sends coarser material downstream, armoring legacy sediments
- á Bathymetry analysis agrees with TSS results

LPR/NB Modeling Program

Take-Away Message for CSM á Quantify the response of the river in terms of the hydrograph and the response of the bed á Significant contribution of local (cyclical) effects supports strategy of targeted remediation á Model and bathymetric analysis allow a detailed design of a targeted remedy

what did we do?

Pg 5

- á Upload 5×5 ft resolution multi-beams 2007, 2008, 2010, 2011 $_{\rm lim}$ and 2011 into Open Earth*
- á Construct differential-bathy maps
- á Analyze bed evolution at variety of scales
- á Made a start with river-covering sediment mass balance
- á Compare bathy-data with TSS & other data

*Open Earth is powerful data analysis package integrated with Google Earth facilities

LPR/NB Modeling Program

preliminary results – subject to review and revision

project relevance

Pg 6

- á Assess river stability at frequent and extreme events (Irene)
- á Differentiate between local scour and bed erosion
- á Provide input for targeted remediation
- á Provide data for model calibration and interpretation
- á Provide data for system understanding
- á Contribute to another line of evidence

LPR/NB Modeling Program

Relevant Topics

Pg 7

- 1. Correction of 2008 multi beam survey
- 2. Evolution has to be assessed in conjunction with hydrograph
- 3. Interpretation of bed level changes in the LPR
- 4. Local scour and Infill
- 5. Quantification of the transition between hydrosedimentological regimes I, II & III
- 6. Consistency of bathy evolutions with other data
- 7. Sand transport in upper reaches

LPR/NB Modeling Program

reliminary results – subject to review and revision

Relevant Topics

g 8

1. Correction of 2008 multi beam survey

LPR/NB Modeling Program

Correction of 2008 multi-beam Original 2008 data do not make sense; correction based on: á Comparison of reference points (rock outcrop) á Comparison of multiple cross sections á Implications for overall mass balance (compared to other years) á Comparison with TSS data 2008 data seem ~0.3 ft too low (systematically), and have been corrected based on the previous analyses

Pg 14 LPR extreme flows Extreme analysis at Little Falls (1891 to 2005) by EPA (Appendix G, Draft FFS) á 1-year 6,200 á 5-year 9,968 á 10-year 12,219 á 25-year 15,280 á 50-year 17,465 á 100-year 19,808 Since 2005 we have had 1-10Yr, 2-25Yr and 1-100Yr. Irene was the second largest value in the USGS record since 1900 at Little Falls á Oct 10, 1903 - 31,700 cfs á Aug 30, 2011 – 20,800 cfs á Jul 23, 1945 - 19,500 cfs MAN Deficie LPR/NB Modeling Program preliminary results - subject to review and revision

Correction of 2008 multi beam survey Evolution has to be assessed in conjunction with hydrograph Interpretation of bed level changes in the LPR

LPR/NB Modeling Program

oreliminary results - subject to review and revisio

Deltore:

a apply 2008 bathy correction a subtract various bathymetries and integrate over length of river a note that multi-beam soundings cannot account for shallow areas

Relevant Topics

Pg 22

- 1. Correction of 2008 multi beam survey effect on mass balance
- 2. Evolution has to be assessed in conjunction with hydrograph
- 3. Interpretation of bed level changes in the LPR

LPR/NB Modeling Program

Pg 25 local scour and infill á These sub-grid effects may be most important findings of bathymetrical analyses in relation to targeted remediation á Few examples are presented – there are many more á Large mass of mobile sediments may be characterized by cyclical scour and infill á Such cyclical behavior does not affect stability of legacy sediments á We are quantifying ratio scour/infill to erosion/sedimentation (in progress) á Scour/infill are sub-grid effects for numerical model this should be accounted for in interpretation of model results Delfore:

LPR/NB Modeling Program

Relevant Topics

Pg 39

- 1. Correction of 2008 multi beam survey
- 2. Evolution has to be assessed in conjunction with hydrograph
- 3. Interpretation of bed level changes in the LPR
- 4. Local scour and Infill
- 5. Quantification of the transition between hydrosedimentological regimes I, II & III

LPR/NB Modeling Program

oreliminary results - subject to review and revisio

recap on hydro-sedimentological regimes LPR

g 40

á Regime I: Sediment accumulation in LPR

á Regime II: Flushing of fluffy sediment

from TSS-data

á Regime III: Erosion and scour of LPR bed

from TSS-data & bathymetrical response

LPR/NB Modeling Program

Pg 48 net bed level changes & TSS á Use 2010-2008 bathy difference á Take Sedflume bulk densities á Analyze for March 2010 flood: \tilde{N} 2 days flood (day 2, 3, & 4) \tilde{N} 8 days flood (> 8,000 cfs) Ñ 23 days flood (>4,000 cfs) rho_bulk rho_bulk 1200 1400 kg/m3 493 3 days flood 234 mg/l 8 days flood 114 241 mg/l 23 days flood 54 114 mg/l TSS Chant: ~200 mg/l Dundee Dam: 50 -180 mg/l without 2008 correction we get nonsense Deltares LPR/NB Modeling Program preliminary results - subject to review and revision

á data show considerable sand transport in upper LPR á this is reflected in sand content over entire LPR á sediments scoured around bridge pillars are deposited downstream of scouring places: this must be coarser material as scour occurs under high flow events á very important for: Ñ sand helps to armor the bed against erosion Ñ this armoring is at the heart of SEDZLJ modeling

discussion and conclusions (1)

Pg 59

- á 2008 multi-beam data is corrected by -0.3 ft
- á 2007-2008: net infill, as no events
- á 2008-2010: net erosion due to March 2010 flood
- á 2010-2011: net erosion due to two floods, including Irene total erosion rate comparable to 2008-2010
- á Erosion/deposition largely (but not only) due to local scour around irregularities (bridge pillars, bank extrusions,)
- á Erosion-deposition show often cyclic behavior
- á This scouring is a sub-grid effect in our models (cannot be resolved in detail)

LPR/NB Modeling Program

preliminary results - subject to review and revision

discussion and conclusions (2)

Pg 60

- 2008 2007 bathy infill corresponds to first order of magnitude with sum of net upstream transport (from TSS data) and Dundee Dam import (from rating curve)
- á Pilot dredging experiment showed infill rate of ~3 mm/day. i.e. 1 foot in 109 days hence infill of scour holes within 2008 2007 bathy is consistent
- á Large changes in bathy & bed forms in upper reaches of LPR are (partly) attributed to transport (bed load) of sand
- á The latter is consistent with grain size distribution in lower LPR reaches, and explains armoring (model approach)

LPR/NB Modeling Program

